Extensions 1→N→G→Q→1 with N=C3 and Q=S3×C32

Direct product G=N×Q with N=C3 and Q=S3×C32
dρLabelID
S3×C3354S3xC3^3162,51

Semidirect products G=N:Q with N=C3 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
C3⋊(S3×C32) = C32×C3⋊S3φ: S3×C32/C33C2 ⊆ Aut C318C3:(S3xC3^2)162,52

Non-split extensions G=N.Q with N=C3 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
C3.1(S3×C32) = C32×D9φ: S3×C32/C33C2 ⊆ Aut C354C3.1(S3xC3^2)162,32
C3.2(S3×C32) = C3×C32⋊C6φ: S3×C32/C33C2 ⊆ Aut C3186C3.2(S3xC3^2)162,34
C3.3(S3×C32) = C3×C9⋊C6φ: S3×C32/C33C2 ⊆ Aut C3186C3.3(S3xC3^2)162,36
C3.4(S3×C32) = S3×C3×C9central extension (φ=1)54C3.4(S3xC3^2)162,33
C3.5(S3×C32) = S3×He3central stem extension (φ=1)186C3.5(S3xC3^2)162,35
C3.6(S3×C32) = S3×3- 1+2central stem extension (φ=1)186C3.6(S3xC3^2)162,37

׿
×
𝔽